Qubits, qubits, qubits: more is different

Image for post
Image for post
What did you learn last week?
Last week was your quantum trial by fire! You were introduced to the fundamental unit of quantum information: the qubit. Manipulating qubits is applied linear algebra, which is greatly facilitated by Dirac notation. Using Dirac notation, you modified the state of a qubit and calculated the probability of each results when “reading” the quantum information — the act of measurement.
What will you learn this week?
This week you will meet… more qubits! You’ll find out how multiple qubits are represented in the language of linear algebra and Dirac notation. You’ll be introduced to entanglement to get your first taste of a crucial difference between quantum and classical information. At the end of this week, you’ll have all the tools you need to analyse a quantum algorithm.
What will you be able to do at the end of this week 2?
At the end of this module, you should be able to answer these questions:
How is the state of two qubits represented?
How is the tensor product shorthand notation used?
How are quantum circuits of multiple qubits represented?
How do I prove a state is entangled?
How do I create an entangled state?

Qubits, qubits, qubits: More is the same

Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post
Image for post

Qubits, qubits, qubits: More is different

Image for post
Image for post
Image for post
Image for post

Let’s play: Find the missing gate

Image for post
Image for post
Image for post
Image for post

Quantum theorist by day, father by night. Occasionally moonlights as a children’s book author. www.csferrie.com @csferrie

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store